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Lecture Note 6: Inapproximability 

Introduction 

When we work on approximation algorithm, we want to find an algorithm of which the approximation 

ratio is close to 1 (0.99999 for maximization problem and 1.00001 for minimization problem). However, 

for the vertex cover problem, we have a 2-approximation algorithm. Other researchers might have 

questions if you can have a better approximation ratio for the problem. They might try to beat you by 

finding a 1.9999-approximation algorithm for the problem. However, it might be impossible to have 

that. Those researchers may waste time, but cannot find anything. 

 In Lecture 2, we discuss “NP-hardness”, which how to prove that a problem is not solvable. 

We will use the concept to formally show that 1.9999-approximation algorithm for vertex cover is not 

possible. 

Reformulating Problems 

Recall that the formulation of the vertex cover problem is as follows: 

Input:   Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉} 

Output:   𝑆 ⊆ 𝑉 

Constraint:  For all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆 

Objective Function: Minimize |𝑆| 

We want to find a valid set 𝑆 that is smaller than any valid set 𝑆′. In other word, if 𝑆 is an optimal 

solution of the optimization model, |𝑆| ≤ |𝑆′| for all 𝑆′ that satisfies the constraint. We can replace the 

objective function with the following constraint. 

Input:   Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉} 

Output:   𝑆 ⊆ 𝑉 

Constraint:  For all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆. 

                                        For all 𝑆′ such that, for all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆, we have |𝑆| ≤ |𝑆′| 

Objective Function: None 

All solutions of the new problem are optimal solutions of vertex cover. When we have an 1.9999-

approximation algorithm for vertex cover, it means that, from the algorithm, we have 𝑆 such that |𝑆| ≤

1.9999 ⋅ 𝑂𝑃𝑇. Because 𝑂𝑃𝑇 is the smallest size of all the valid 𝑆′, we know that the above inequality 

is equivalent to |𝑆| ≤ 1.9999 ⋅ |𝑆′| for all valid 𝑆′.  

 As a conclusion of the discussion in the previous paragraph, if we have an 1.9999-

approximation algorithm for vertex cover, we can solve the following optimization model. On the other 

hand, if we can solve the optimization model, we will have an 1.9999-approximation algorithm. We 

will call the model as 1.9999-approximation vertex cover problem. 

Input:   Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉} 

Output:   𝑆 ⊆ 𝑉 

  



Constraint:  For all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆. 

                                        For all 𝑆′ such that, for all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆,  

                                                                                                                  we have |𝑆| ≤ 1.9999 ⋅ |𝑆′| 

Objective Function: None 

Having the 1.9999-approximation algorithm is as hard as solving the 1.9999-approximation vertex 

cover problem. If the solving the problem is not possible, then having the 1.9999-approximation 

algorithm is also not possible. To show that solving the problem is not possible, we can prove that the 

problem is NP-hard. 

Inapproximability of the Vertex Cover Problem 

Unfortunately, no one can prove that the 1.9999-approximation vertex cover problem is NP-hard. On 

the other hand, no one can find a 1.9999-approximation algorithm for the vertex cover problem. Because 

of that, the smallest approximation ratio is still an open problem. 

 Recall that we believe that NP-hard problems are not solvable based on our belief that SAT is 

not solvable. There is some people believe that, not only SAT is not solvable, but some problems easier 

than SAT are also not solvable. Two of the most well-known examples are called as unique games 

conjecture, which believe that a problem called unique game is not solvable, and exponential-time 

hypothesis, which believe that we cannot solve SAT in 𝑂(1.9999𝑛) . We know that a 1.9999-

approximation algorithm is not possible under the unique game hypothesis.  

Warm up 

When a 1.9999-approximation algorithm for vertex cover is not possible, we know that 1.5-

approximation algorithm is also not possible. However, let try to show that systematically.  

 We know that having a 1.9999-approximation algorithm is equivalent to solving the 1.9999-

approximation vertex cover problem. Using the same argument, we know that having a 1.5-

approximation algorithm is equivalent to the following model, called as 1.5-approximation vertex cover 

problem. 

Input:   Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉} 

Output:   𝑆 ⊆ 𝑉 

Constraint:  For all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆. 

                                        For all 𝑆′ such that, for all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆,  

                                                                                                                  we have |𝑆| ≤ 1.5 ⋅ |𝑆′| 

Objective Function: None 

We will prove that the 1.5-approximation vertex cover is not solvable, based on the fact that 1.9999-

approximation vertex cover is not solvable. In other words, we will show that 1.5-approximation vertex 

cover is harder than 1.9999-approximation vertex cover.  

To do that, we will assume that there is an algorithm for the 1.5-approximation vertex cover 

provided in a library. Then, we will write a program for the 1.9999-approximation vertex cover. That 

is: 

Set 1.5ApproxVertexCover(Set V, Set E) 

Set 1.9999ApproxVertexCover(Set V, Set E){ 

 return 1.5ApproxVertexCover(V, E) 

}  



 Let us discuss why the above program for 1.9999ApproxVertexCover  is valid. From the 

function 1.5ApproxVertexCover, we have the output 𝑆 such that |𝑆| ≤ 1.5|𝑆′| for all valid 𝑆′. That 

means 𝑆  is a set such that |𝑆| ≤ 1.5|𝑆′| ≤ 1.999|𝑆′|  for all valid 𝑆′ , and 𝑆  is also a solution for 

1.9999ApproxVertexCover. 

 We can solve  1.9999ApproxVertexCover using 1.5ApproxVertexCover. 

1.5ApproxVertexCover is harder than 1.9999ApproxVertexCover. When the 1.9999-

approximation vertex cover problem is not solvable, the 1.5-approximation vertex cover problem is also 

not solvable. 

𝒌-Center Problem 

Called as “clustering”, dividing a set of information to groups are one of basic problems in machine 

learning. However, the word “clustering” is not formally defined. There are many works trying to 

formalize clustering into optimization models. Two of the most well-known formulation are “𝑘-means” 

and “𝑘-center”. We will focus on the 𝑘-center, which is formulated below, in this lecture note. 

Input:   Number of data points 𝑛 

   For all 𝑖, 𝑗, distance between 𝑖 and 𝑗 denoted by 𝑑(𝑖, 𝑗) 

   Number of groups to find 𝑘 

Output:   Positions of centers for each group 𝑆 ⊆ {1, … , 𝑛} 

Constraint:  |𝑆| = 𝑘 

Objective Function: Distance to closest center of 𝐱𝑖 is 𝑑𝑖 = min
𝑗∈𝑆

𝑑(𝑖, 𝑗)  

   Minimize max
𝑖

𝑑𝑖 

To understand the formulation, let us consider the case that we have 𝑛 houses in our city. Their 

locations are 𝐱1, … , 𝐱𝑛. We want to set up 𝑘 ward offices in the city, and we want to minimize the 

commuting time from houses to ward office. We believe that each house will commute to the closest 

office, and their commuting distance would be 𝑑𝑖. The most suffering house is going to be a house with 

the largest 𝑑𝑖, i.e. a house with commuting time equals max
𝑖

𝑑𝑖. We want to having the most suffering 

house has the least suffer as possible, so we minimize max
𝑖

𝑑𝑖. 

Houses will be put to the same group if they use the same ward office. Consider a city with 7 

houses. The locations of the houses is shown below. Suppose that we set the ward offices at position 

𝑆 = {3,5}. All houses can commute to ward offices within distance √2. We know that {3,5} is the 

optimal solution for this input. Houses that will go to the ward office located at 𝐱3 is 1,2,3, while houses 

that will go to the ward office located at 𝐱5 is 4, 5, 6, 7. By that, we can divide the houses (data) into 2 

groups {1,2,3} and {4,5,6,7}. 

 



 There is a 2-approximation algorithm for the “k-center formulation [1]. The algorithm is based 

on the greedy scheme that we discussed in lecture note 3. In this lecture note, we will show that a 

1.9999-approximation algorithm is not possible. That is equivalent to showing that the following 

optimization model is not solvable. 

Input:   Number of data points 𝑛 

   For all 𝑖, 𝑗 ∈ {1, … , 𝑛}, distance between 𝑖 and 𝑗 denoted by 𝑑(𝑖, 𝑗) 

   Number of groups to find 𝑘 

Output:   Positions of centers for each group 𝑆 ⊆ {1, … , 𝑛} 

Constraint: |𝑆| = 𝑘 

For any set 𝑆, suppose that 𝐷𝑆 ≔ max
𝑖∈{1,…,𝑛}

min
𝑗∈𝑆′

||𝐱𝑖 − 𝐱𝑗||.  

For any 𝑆′ such that |𝑆′| = 𝑘, 𝐷𝑆 ≤ 1.9999 ⋅ 𝐷𝑆′     

Objective Function: None 

We will call the problem as 1.9999-approximation 𝑘-center problem. From now, we will prove that the 

problem is NP-hard. The proof will based on the fact that the dominating set, defined in the following 

section, is NP-hard. 

Dominating Set Problem 

We will turn back to a problem on social networks. Previously, in the vertex cover problem, we choose 

a set of persons to cover all communications (friendships). In dominating set problem, we want to cover 

all persons. In other words, every persons must be in the set or next to someone in the set. 

 Consider a social network with a set of persons 𝑉 and a set of friendships 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}. 

A set 𝑆 ⊆ 𝑉  is a dominating set of the social network, if all 𝑣 ∈ 𝑉  satisfy one of the following 

conditions: 

1. 𝑣 ∈ 𝑆 

2. There is 𝑢 such that 𝑢 ∈ 𝑆 and {𝑢, 𝑣} ∈ 𝐸. 

In the below social network, {𝐴, 𝐸} is not a dominating set, as 𝐶 is not in the set and {𝐴, 𝐸} do not have 

a friendship with 𝐶. On the other hand, {𝐵, 𝐷} is a dominating set, as {𝐵, 𝐷} are friends of everyone in 

the social network. 

 

The formulation of the dominating set problem is as follows. The dominating set problem is 

one of the most NP-hard problem. 

Input:   Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉} 

   Positive integer 𝑘 

Output:   Yes or No 

Constraint:  Yes, if there is a dominating set 𝑆 with |𝑆| ≤ 𝑘. 

   No, otherwise 

Objective Function: None 



Inapproximability of the 𝒌-center Problem 

Now, we are ready to prove that the 1.9999-approximation 𝑘-center problem is NP-hard. We will prove 

that the problem is harder than the dominating set problem, which is NP-hard. Thus, we will assume 

that a program for the 1.9999-approximation 𝑘-center problem is provided in a library, and we will 

write a program for the dominating set problem based on that. 

A program for the dominating set problem is as follows: 

Set 1.9999ApproxKCenter(int n, double[][] d, int k); 

boolean dominatingSet(Set V, Set E, k){ 

  Suppose that 𝑉 = {1, … , 𝑛} 

  Let 𝑑 be a 2-dimenstional array with size 𝑛 × 𝑛. 

  𝑑[𝑖][𝑗] = {
0 when 𝑖 = 𝑗

1 when {𝑖, 𝑗} ∈ 𝐸
2 otherwise.

 

𝑆′ = 1.9999ApproxKCenter(n, d, k) 

If 𝐷𝑆′ ≤ 1:  return Yes 

Else:  return No 

} 

 When there exists a dominating set 𝑆 with |𝑆| = 𝑘, all persons are in 𝑆 or have friends in 𝑆. By 

the definition of 𝑑[𝑖][𝑗] in the program, for all persons 𝑖 ∈ 𝑉, there always exists person 𝑗 ∈ 𝑆 such that 

𝑑[𝑖][𝑗] = 0 or 𝑑[𝑖][𝑗] = 1. As we use 𝑑 as a distance in the 𝑘-center problem, if we set up ward offices 

at all houses in 𝑆, we know that the distance from 𝑖 to the closest ward office (𝑗 ∈ 𝑆) would not be more 

than 1. We have 𝐷𝑆 = 1.  

 We know that the output of 1.9999ApproxKCenter, denoted by 𝑆′, has 𝐷𝑆′ ≤ 1.9999 ⋅ 𝐷𝑆 =

1.9999. As, for this input, 𝐷𝑆′  can be only 1 and 2, when 𝐷𝑆′ ≤ 1.9999, we know that 𝐷𝑆′ = 1. The 

output of dominatingSet is Yes as it should be. 

 When there does not exist a dominating set 𝑆 with |𝑆| = 𝑘, by the same argument, we will 

know that all 𝑆 has 𝐷𝑆 = 2. The output of 1.9999ApproxKCenter, denoted by 𝑆′ is then has 𝐷𝑆′ =

2. The output of dominatingSet is Yes as it should be.   

RG-TOSS Problem 

In this section, we will consider the robustness guaranteed task-optimized group search (RG-TOSS) 

problem. The problem is proposed in [2]. 

 The authors consider “social networks of the Internet of Things (IoTs)”. Mathematically, it is 

very similar to ordinary social networks we have discussed so far. The only difference is the set 𝑉 is 

not a set of persons, but a set of “anything” (e.g. lights, air conditions, fridges). We have {𝑢, 𝑣} ∈ 𝐸 

when 𝑢 and 𝑣 can communicate using any type of networks (4G, Wi-fi).  

 Let us consider the social network in the following page. In a smart house, we have sensors at 

the following 3 furniture, fridge, light, and air condition. To precisely set the power of the air condition, 

we want to measure the temperature at three red points. The sensor attached at the fridge can guess the 

temperature at point 1 very well, and may be able to measure the temperature at point 2. Suppose that 

the probability that the sensor can have the temperature from point 1 is 0.9 and from point 2 is 0.5. 

 Suppose that we would like to have the temperature information only at point 1. We cannot 

collect the information at all of the sensors as the data collection is costly. We can collect from the 



sensor at fridge, then we can collect the information with probability 0.9. However, it is possible that 

the information is incorrect. The sensor wants to make sure that what they have got is correct with their 

peers, which are sensors that can directly communicate with them. If we select more sensors around 

them, the information will be rechecked more, and we will have a robust information. 

 We will require each selected sensor to be friends of at least 𝑘 selected sensors. For example, 

in the above sensor network, we cannot select only the sensor at the fridge but we have to also include 

the sensor at the light. 

 By the discussion, our optimization model, is as follows: 

Input:   Set of sensors 𝑉, Set of friendships 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}   

   Set of measurement point 𝑇  

   For all 𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑉, the probability that we have information 𝑡 by the  

            sensor 𝑣 ∈ 𝑉, denoted by 𝑝(𝑡, 𝑣)  

   Robustness parameter 𝑘 ∈ ℤ>0, budget 𝑠 ∈ ℤ>0 

Output:   𝑆 ⊆ 𝑉 

Constraint:  For all 𝑣 ∈ 𝑆, |{{𝑢, 𝑣} ∈ 𝐸: 𝑢 ∈ 𝑆}| ≥ 𝑘, |𝑆| = 𝑠 

Objective Function: Maximize ∑ 𝑃(𝑡)𝑡  when 𝑃(𝑡) ≔ ∑ 𝑝(𝑡, 𝑣)𝑣∈𝑆  is a probability of having the       

     information at the measurement point 𝑡 

The optimization model is clearly NP-hard, even to find an output that satisfies the constraint. 

Let us now consider the above model when we do not have the objective function. Without the objective 

function, we do not need to have 𝑇 and 𝑝(𝑡, 𝑣) as our inputs anymore. The optimization model is as 

follows: 

Input:   Set of sensors 𝑉, Set of friendships 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}   

   Robustness parameter 𝑘 ∈ ℤ>0, budget 𝑠 ∈ ℤ>0 

Output:   𝑆 ⊆ 𝑉 

Constraint:  For all 𝑣 ∈ 𝑆, |{{𝑢, 𝑣} ∈ 𝐸: 𝑢 ∈ 𝑆}| ≥ 𝑘, |𝑆| = 𝑠 

Objective Function: None 

We will call the optimization model as RG-TOSS’, and will prove that the problem is NP-hard. 

Previously, we introduce you the clique problem. Recall that the optimization model of the problem is 

as follows: 

 Input:   Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}   

   𝑠 ∈ ℤ>0 



Output:   𝑆 ⊆ 𝑉 

Constraint:  For all 𝑢, 𝑣 ∈ 𝑆, {𝑢, 𝑣} ∈ 𝐸, |𝑆| = 𝑠  

Objective Function: None 

The input, output, and objective function of the clique problem. The only different is the constraint. Let 

us consider the case when 𝑘 = 𝑠 − 1. We have |{{𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆}| ≥ 𝑘 − 1. As |𝑆| = 𝑘, when we 

have the constraint, we know that all 𝑢 ∈ 𝑆 − {𝑣} are friends of 𝑣. We know that, for all 𝑢, 𝑣 ∈ 𝑆, 

{𝑢, 𝑣} ∈ 𝐸, which is a constraint of the clique problem. To conclude, we know that RG-TOSS’ is 

equivalent to the clique problem when 𝑘 = 𝑠 − 1. We can write a program for the clique problem based 

on a library for RG-TOSS’ as follows: 

Set RG-TOSS’(Set V, Set E, int k, int s) 

Set clique(Set V, Set E, int s){ 

  RG-TOSS’(V, E, s-1, s) 

} 

By the above program, we know that RG-TOSS’ is NP-hard. Even finding a solution is NP-hard, it is 

straightforward to show that find a solution that optimize an objective function is also NP-hard. 

 When it comes to approximation algorithms, things will become more complicated. Previously, 

algorithms can find a solution just it is not an optimal, so we can prove that 𝑆𝑂𝐿 ≤ 𝑂𝑃𝑇. We cannot 

even find a solution now. The definition of approximation algorithm cannot apply here, because 𝑆𝑂𝐿 is 

not very well defined. The authors cope with the problem with the following reformulation. 

Input:   Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}   

   Set 𝑇, for all 𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑉, probability 𝑝(𝑡, 𝑣)  

   𝑘, 𝑠 ∈ ℤ>0 

Output:   𝑆 ⊆ 𝑉 

Constraint:  |𝑆| = 𝑠 

Objective Function: Maximize 𝐿  

𝐿 = 0 when |{{𝑢, 𝑣} ∈ 𝐸: 𝑢 ∈ 𝑆}| < 𝑘.  

Otherwise, 𝐿 = ∑ 𝑃(𝑡)𝑡  when 𝑃(𝑡) ≔ ∑ 𝑝(𝑡, 𝑣)𝑣∈𝑆   

Personally, I am skeptical on the reformulation, but let us try to discuss the inapproximability of the 

above problem, which we will call as RG-TOSS’’. 

 The authors of [2] show that, for RG-TOSS’’, it is not possible to have 𝛼-approximation 

algorithm for any 𝛼 > 0.  To prove that, we have to reformulate the problem. Let 𝐿𝑆 be the value of 𝐿 

we will have for a set 𝑆. We will reformulate RG-TOSS’’ to the optimization model. 

Input:   Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}   

   Set 𝑇, for all 𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑉, probability 𝑝(𝑡, 𝑣)  

   𝑘, 𝑠 ∈ ℤ>0 

Output:   𝑆 ⊆ 𝑉 

Constraint:  |𝑆| = 𝑠 

     𝐿𝑆 ≤ 𝐿𝑆′  for all 𝑆′ ⊆ 𝑉 such that |𝑆′| = 𝑠. 

Objective Function: None  



 Having 𝛼-approximation algorithm is as hard as solving the following optimization model. 

Input:   Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}   

   Set 𝑇, for all 𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑉, probability 𝑝(𝑡, 𝑣)  

   𝑘, 𝑠 ∈ ℤ>0 

Output:   𝑆 ⊆ 𝑉 

Constraint:  |𝑆| = 𝑠 

     𝐿𝑆 ≤ 𝛼 ⋅ 𝐿𝑆′  for all 𝑆′ ⊆ 𝑉 such that |𝑆′| = 𝑠. 

Objective Function: None  

By the definition of 𝐿𝑆, when 𝑠 = 𝑘 − 1, 𝐿𝑆 = 0 for all non-clique 𝑆. When 𝑆 is a solution of the clique 

problem, we have 𝐿𝑆 > 0. By the following program, we will prove that above optimization model, 

called as 𝛼-approximation RG-TOSS’’ is NP-hard based on the fact that the clique problem is NP-hard. 

Set alpha-approx-RG-TOSS’’(Set V, Set E, int k, int s) 

Set clique(Set V, Set E, int s){ 

  return alpha-approx-RG-TOSS’’(V, E, s-1, s) 

} 

Suppose that there exists a clique 𝑆′ with |𝑆′| = 𝑠. We know that there is some 𝑆′ such that 

|𝑆′| = 𝑠  and 𝐿𝑆′ > 0. Let us assume that the output of alpha-approx-RG-TOSS’’ is 𝑆 . By the 

constraint of the 𝛼-approximation RG-TOSS’’, we have 𝐿𝑆 ≥ 𝛼 ⋅ 𝐿𝑆′ . As 𝛼 > 0 and 𝐿𝑆′ > 0, 𝐿𝑆 > 0. 

𝑆 is a clique and the function clique runs correctly. 

We then know that it is not possible to have any approximation algorithm for the RG-TOSS’’ 

problem. 
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