
4810-1183 Approximation and Online Algorithms with Applications

Lecture Note 6: Inapproximability

Introduction

When we work on approximation algorithm, we want to find an algorithm of which the approximation

ratio is close to 1 (0.99999 for maximization problem and 1.00001 for minimization problem). However,

for the vertex cover problem, we have a 2-approximation algorithm. Other researchers might have

questions if you can have a better approximation ratio for the problem. They might try to beat you by

finding a 1.9999-approximation algorithm for the problem. However, it might be impossible to have

that. Those researchers may waste time, but cannot find anything.

 In Lecture 2, we discuss “NP-hardness”, which how to prove that a problem is not solvable.

We will use the concept to formally show that 1.9999-approximation algorithm for vertex cover is not

possible.

Reformulating Problems

Recall that the formulation of the vertex cover problem is as follows:

Input: Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

Output: 𝑆 ⊆ 𝑉

Constraint: For all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆

Objective Function: Minimize |𝑆|

We want to find a valid set 𝑆 that is smaller than any valid set 𝑆′. In other word, if 𝑆 is an optimal

solution of the optimization model, |𝑆| ≤ |𝑆′| for all 𝑆′ that satisfies the constraint. We can replace the

objective function with the following constraint.

Input: Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

Output: 𝑆 ⊆ 𝑉

Constraint: For all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆.

 For all 𝑆′ such that, for all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆, we have |𝑆| ≤ |𝑆′|

Objective Function: None

All solutions of the new problem are optimal solutions of vertex cover. When we have an 1.9999-

approximation algorithm for vertex cover, it means that, from the algorithm, we have 𝑆 such that |𝑆| ≤

1.9999 ⋅ 𝑂𝑃𝑇. Because 𝑂𝑃𝑇 is the smallest size of all the valid 𝑆′, we know that the above inequality

is equivalent to |𝑆| ≤ 1.9999 ⋅ |𝑆′| for all valid 𝑆′.

 As a conclusion of the discussion in the previous paragraph, if we have an 1.9999-

approximation algorithm for vertex cover, we can solve the following optimization model. On the other

hand, if we can solve the optimization model, we will have an 1.9999-approximation algorithm. We

will call the model as 1.9999-approximation vertex cover problem.

Input: Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

Output: 𝑆 ⊆ 𝑉

Constraint: For all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆.

 For all 𝑆′ such that, for all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆,

 we have |𝑆| ≤ 1.9999 ⋅ |𝑆′|

Objective Function: None

Having the 1.9999-approximation algorithm is as hard as solving the 1.9999-approximation vertex

cover problem. If the solving the problem is not possible, then having the 1.9999-approximation

algorithm is also not possible. To show that solving the problem is not possible, we can prove that the

problem is NP-hard.

Inapproximability of the Vertex Cover Problem

Unfortunately, no one can prove that the 1.9999-approximation vertex cover problem is NP-hard. On

the other hand, no one can find a 1.9999-approximation algorithm for the vertex cover problem. Because

of that, the smallest approximation ratio is still an open problem.

 Recall that we believe that NP-hard problems are not solvable based on our belief that SAT is

not solvable. There is some people believe that, not only SAT is not solvable, but some problems easier

than SAT are also not solvable. Two of the most well-known examples are called as unique games

conjecture, which believe that a problem called unique game is not solvable, and exponential-time

hypothesis, which believe that we cannot solve SAT in 𝑂(1.9999𝑛) . We know that a 1.9999-

approximation algorithm is not possible under the unique game hypothesis.

Warm up

When a 1.9999-approximation algorithm for vertex cover is not possible, we know that 1.5-

approximation algorithm is also not possible. However, let try to show that systematically.

 We know that having a 1.9999-approximation algorithm is equivalent to solving the 1.9999-

approximation vertex cover problem. Using the same argument, we know that having a 1.5-

approximation algorithm is equivalent to the following model, called as 1.5-approximation vertex cover

problem.

Input: Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

Output: 𝑆 ⊆ 𝑉

Constraint: For all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆.

 For all 𝑆′ such that, for all {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆 or 𝑣 ∈ 𝑆,

 we have |𝑆| ≤ 1.5 ⋅ |𝑆′|

Objective Function: None

We will prove that the 1.5-approximation vertex cover is not solvable, based on the fact that 1.9999-

approximation vertex cover is not solvable. In other words, we will show that 1.5-approximation vertex

cover is harder than 1.9999-approximation vertex cover.

To do that, we will assume that there is an algorithm for the 1.5-approximation vertex cover

provided in a library. Then, we will write a program for the 1.9999-approximation vertex cover. That

is:

Set 1.5ApproxVertexCover(Set V, Set E)

Set 1.9999ApproxVertexCover(Set V, Set E){

 return 1.5ApproxVertexCover(V, E)

}

 Let us discuss why the above program for 1.9999ApproxVertexCover is valid. From the

function 1.5ApproxVertexCover, we have the output 𝑆 such that |𝑆| ≤ 1.5|𝑆′| for all valid 𝑆′. That

means 𝑆 is a set such that |𝑆| ≤ 1.5|𝑆′| ≤ 1.999|𝑆′| for all valid 𝑆′ , and 𝑆 is also a solution for

1.9999ApproxVertexCover.

 We can solve 1.9999ApproxVertexCover using 1.5ApproxVertexCover.

1.5ApproxVertexCover is harder than 1.9999ApproxVertexCover. When the 1.9999-

approximation vertex cover problem is not solvable, the 1.5-approximation vertex cover problem is also

not solvable.

𝒌-Center Problem

Called as “clustering”, dividing a set of information to groups are one of basic problems in machine

learning. However, the word “clustering” is not formally defined. There are many works trying to

formalize clustering into optimization models. Two of the most well-known formulation are “𝑘-means”

and “𝑘-center”. We will focus on the 𝑘-center, which is formulated below, in this lecture note.

Input: Number of data points 𝑛

 For all 𝑖, 𝑗, distance between 𝑖 and 𝑗 denoted by 𝑑(𝑖, 𝑗)

 Number of groups to find 𝑘

Output: Positions of centers for each group 𝑆 ⊆ {1, … , 𝑛}

Constraint: |𝑆| = 𝑘

Objective Function: Distance to closest center of 𝐱𝑖 is 𝑑𝑖 = min
𝑗∈𝑆

𝑑(𝑖, 𝑗)

 Minimize max
𝑖

𝑑𝑖

To understand the formulation, let us consider the case that we have 𝑛 houses in our city. Their

locations are 𝐱1, … , 𝐱𝑛. We want to set up 𝑘 ward offices in the city, and we want to minimize the

commuting time from houses to ward office. We believe that each house will commute to the closest

office, and their commuting distance would be 𝑑𝑖. The most suffering house is going to be a house with

the largest 𝑑𝑖, i.e. a house with commuting time equals max
𝑖

𝑑𝑖. We want to having the most suffering

house has the least suffer as possible, so we minimize max
𝑖

𝑑𝑖.

Houses will be put to the same group if they use the same ward office. Consider a city with 7

houses. The locations of the houses is shown below. Suppose that we set the ward offices at position

𝑆 = {3,5}. All houses can commute to ward offices within distance √2. We know that {3,5} is the

optimal solution for this input. Houses that will go to the ward office located at 𝐱3 is 1,2,3, while houses

that will go to the ward office located at 𝐱5 is 4, 5, 6, 7. By that, we can divide the houses (data) into 2

groups {1,2,3} and {4,5,6,7}.

 There is a 2-approximation algorithm for the “k-center formulation [1]. The algorithm is based

on the greedy scheme that we discussed in lecture note 3. In this lecture note, we will show that a

1.9999-approximation algorithm is not possible. That is equivalent to showing that the following

optimization model is not solvable.

Input: Number of data points 𝑛

 For all 𝑖, 𝑗 ∈ {1, … , 𝑛}, distance between 𝑖 and 𝑗 denoted by 𝑑(𝑖, 𝑗)

 Number of groups to find 𝑘

Output: Positions of centers for each group 𝑆 ⊆ {1, … , 𝑛}

Constraint: |𝑆| = 𝑘

For any set 𝑆, suppose that 𝐷𝑆 ≔ max
𝑖∈{1,…,𝑛}

min
𝑗∈𝑆′

||𝐱𝑖 − 𝐱𝑗||.

For any 𝑆′ such that |𝑆′| = 𝑘, 𝐷𝑆 ≤ 1.9999 ⋅ 𝐷𝑆′

Objective Function: None

We will call the problem as 1.9999-approximation 𝑘-center problem. From now, we will prove that the

problem is NP-hard. The proof will based on the fact that the dominating set, defined in the following

section, is NP-hard.

Dominating Set Problem

We will turn back to a problem on social networks. Previously, in the vertex cover problem, we choose

a set of persons to cover all communications (friendships). In dominating set problem, we want to cover

all persons. In other words, every persons must be in the set or next to someone in the set.

 Consider a social network with a set of persons 𝑉 and a set of friendships 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}.

A set 𝑆 ⊆ 𝑉 is a dominating set of the social network, if all 𝑣 ∈ 𝑉 satisfy one of the following

conditions:

1. 𝑣 ∈ 𝑆

2. There is 𝑢 such that 𝑢 ∈ 𝑆 and {𝑢, 𝑣} ∈ 𝐸.

In the below social network, {𝐴, 𝐸} is not a dominating set, as 𝐶 is not in the set and {𝐴, 𝐸} do not have

a friendship with 𝐶. On the other hand, {𝐵, 𝐷} is a dominating set, as {𝐵, 𝐷} are friends of everyone in

the social network.

The formulation of the dominating set problem is as follows. The dominating set problem is

one of the most NP-hard problem.

Input: Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

 Positive integer 𝑘

Output: Yes or No

Constraint: Yes, if there is a dominating set 𝑆 with |𝑆| ≤ 𝑘.

 No, otherwise

Objective Function: None

Inapproximability of the 𝒌-center Problem

Now, we are ready to prove that the 1.9999-approximation 𝑘-center problem is NP-hard. We will prove

that the problem is harder than the dominating set problem, which is NP-hard. Thus, we will assume

that a program for the 1.9999-approximation 𝑘-center problem is provided in a library, and we will

write a program for the dominating set problem based on that.

A program for the dominating set problem is as follows:

Set 1.9999ApproxKCenter(int n, double[][] d, int k);

boolean dominatingSet(Set V, Set E, k){

 Suppose that 𝑉 = {1, … , 𝑛}

 Let 𝑑 be a 2-dimenstional array with size 𝑛 × 𝑛.

 𝑑[𝑖][𝑗] = {
0 when 𝑖 = 𝑗

1 when {𝑖, 𝑗} ∈ 𝐸
2 otherwise.

𝑆′ = 1.9999ApproxKCenter(n, d, k)

If 𝐷𝑆′ ≤ 1: return Yes

Else: return No

}

 When there exists a dominating set 𝑆 with |𝑆| = 𝑘, all persons are in 𝑆 or have friends in 𝑆. By

the definition of 𝑑[𝑖][𝑗] in the program, for all persons 𝑖 ∈ 𝑉, there always exists person 𝑗 ∈ 𝑆 such that

𝑑[𝑖][𝑗] = 0 or 𝑑[𝑖][𝑗] = 1. As we use 𝑑 as a distance in the 𝑘-center problem, if we set up ward offices

at all houses in 𝑆, we know that the distance from 𝑖 to the closest ward office (𝑗 ∈ 𝑆) would not be more

than 1. We have 𝐷𝑆 = 1.

 We know that the output of 1.9999ApproxKCenter, denoted by 𝑆′, has 𝐷𝑆′ ≤ 1.9999 ⋅ 𝐷𝑆 =

1.9999. As, for this input, 𝐷𝑆′ can be only 1 and 2, when 𝐷𝑆′ ≤ 1.9999, we know that 𝐷𝑆′ = 1. The

output of dominatingSet is Yes as it should be.

 When there does not exist a dominating set 𝑆 with |𝑆| = 𝑘, by the same argument, we will

know that all 𝑆 has 𝐷𝑆 = 2. The output of 1.9999ApproxKCenter, denoted by 𝑆′ is then has 𝐷𝑆′ =

2. The output of dominatingSet is Yes as it should be.

RG-TOSS Problem

In this section, we will consider the robustness guaranteed task-optimized group search (RG-TOSS)

problem. The problem is proposed in [2].

 The authors consider “social networks of the Internet of Things (IoTs)”. Mathematically, it is

very similar to ordinary social networks we have discussed so far. The only difference is the set 𝑉 is

not a set of persons, but a set of “anything” (e.g. lights, air conditions, fridges). We have {𝑢, 𝑣} ∈ 𝐸

when 𝑢 and 𝑣 can communicate using any type of networks (4G, Wi-fi).

 Let us consider the social network in the following page. In a smart house, we have sensors at

the following 3 furniture, fridge, light, and air condition. To precisely set the power of the air condition,

we want to measure the temperature at three red points. The sensor attached at the fridge can guess the

temperature at point 1 very well, and may be able to measure the temperature at point 2. Suppose that

the probability that the sensor can have the temperature from point 1 is 0.9 and from point 2 is 0.5.

 Suppose that we would like to have the temperature information only at point 1. We cannot

collect the information at all of the sensors as the data collection is costly. We can collect from the

sensor at fridge, then we can collect the information with probability 0.9. However, it is possible that

the information is incorrect. The sensor wants to make sure that what they have got is correct with their

peers, which are sensors that can directly communicate with them. If we select more sensors around

them, the information will be rechecked more, and we will have a robust information.

 We will require each selected sensor to be friends of at least 𝑘 selected sensors. For example,

in the above sensor network, we cannot select only the sensor at the fridge but we have to also include

the sensor at the light.

 By the discussion, our optimization model, is as follows:

Input: Set of sensors 𝑉, Set of friendships 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

 Set of measurement point 𝑇

 For all 𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑉, the probability that we have information 𝑡 by the

 sensor 𝑣 ∈ 𝑉, denoted by 𝑝(𝑡, 𝑣)

 Robustness parameter 𝑘 ∈ ℤ>0, budget 𝑠 ∈ ℤ>0

Output: 𝑆 ⊆ 𝑉

Constraint: For all 𝑣 ∈ 𝑆, |{{𝑢, 𝑣} ∈ 𝐸: 𝑢 ∈ 𝑆}| ≥ 𝑘, |𝑆| = 𝑠

Objective Function: Maximize ∑ 𝑃(𝑡)𝑡 when 𝑃(𝑡) ≔ ∑ 𝑝(𝑡, 𝑣)𝑣∈𝑆 is a probability of having the

 information at the measurement point 𝑡

The optimization model is clearly NP-hard, even to find an output that satisfies the constraint.

Let us now consider the above model when we do not have the objective function. Without the objective

function, we do not need to have 𝑇 and 𝑝(𝑡, 𝑣) as our inputs anymore. The optimization model is as

follows:

Input: Set of sensors 𝑉, Set of friendships 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

 Robustness parameter 𝑘 ∈ ℤ>0, budget 𝑠 ∈ ℤ>0

Output: 𝑆 ⊆ 𝑉

Constraint: For all 𝑣 ∈ 𝑆, |{{𝑢, 𝑣} ∈ 𝐸: 𝑢 ∈ 𝑆}| ≥ 𝑘, |𝑆| = 𝑠

Objective Function: None

We will call the optimization model as RG-TOSS’, and will prove that the problem is NP-hard.

Previously, we introduce you the clique problem. Recall that the optimization model of the problem is

as follows:

 Input: Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

 𝑠 ∈ ℤ>0

Output: 𝑆 ⊆ 𝑉

Constraint: For all 𝑢, 𝑣 ∈ 𝑆, {𝑢, 𝑣} ∈ 𝐸, |𝑆| = 𝑠

Objective Function: None

The input, output, and objective function of the clique problem. The only different is the constraint. Let

us consider the case when 𝑘 = 𝑠 − 1. We have |{{𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝑆}| ≥ 𝑘 − 1. As |𝑆| = 𝑘, when we

have the constraint, we know that all 𝑢 ∈ 𝑆 − {𝑣} are friends of 𝑣. We know that, for all 𝑢, 𝑣 ∈ 𝑆,

{𝑢, 𝑣} ∈ 𝐸, which is a constraint of the clique problem. To conclude, we know that RG-TOSS’ is

equivalent to the clique problem when 𝑘 = 𝑠 − 1. We can write a program for the clique problem based

on a library for RG-TOSS’ as follows:

Set RG-TOSS’(Set V, Set E, int k, int s)

Set clique(Set V, Set E, int s){

 RG-TOSS’(V, E, s-1, s)

}

By the above program, we know that RG-TOSS’ is NP-hard. Even finding a solution is NP-hard, it is

straightforward to show that find a solution that optimize an objective function is also NP-hard.

 When it comes to approximation algorithms, things will become more complicated. Previously,

algorithms can find a solution just it is not an optimal, so we can prove that 𝑆𝑂𝐿 ≤ 𝑂𝑃𝑇. We cannot

even find a solution now. The definition of approximation algorithm cannot apply here, because 𝑆𝑂𝐿 is

not very well defined. The authors cope with the problem with the following reformulation.

Input: Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

 Set 𝑇, for all 𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑉, probability 𝑝(𝑡, 𝑣)

 𝑘, 𝑠 ∈ ℤ>0

Output: 𝑆 ⊆ 𝑉

Constraint: |𝑆| = 𝑠

Objective Function: Maximize 𝐿

𝐿 = 0 when |{{𝑢, 𝑣} ∈ 𝐸: 𝑢 ∈ 𝑆}| < 𝑘.

Otherwise, 𝐿 = ∑ 𝑃(𝑡)𝑡 when 𝑃(𝑡) ≔ ∑ 𝑝(𝑡, 𝑣)𝑣∈𝑆

Personally, I am skeptical on the reformulation, but let us try to discuss the inapproximability of the

above problem, which we will call as RG-TOSS’’.

 The authors of [2] show that, for RG-TOSS’’, it is not possible to have 𝛼-approximation

algorithm for any 𝛼 > 0. To prove that, we have to reformulate the problem. Let 𝐿𝑆 be the value of 𝐿

we will have for a set 𝑆. We will reformulate RG-TOSS’’ to the optimization model.

Input: Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

 Set 𝑇, for all 𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑉, probability 𝑝(𝑡, 𝑣)

 𝑘, 𝑠 ∈ ℤ>0

Output: 𝑆 ⊆ 𝑉

Constraint: |𝑆| = 𝑠

 𝐿𝑆 ≤ 𝐿𝑆′ for all 𝑆′ ⊆ 𝑉 such that |𝑆′| = 𝑠.

Objective Function: None

 Having 𝛼-approximation algorithm is as hard as solving the following optimization model.

Input: Set 𝑉, Set 𝐸 ⊆ {{𝑢, 𝑣}: 𝑢, 𝑣 ∈ 𝑉}

 Set 𝑇, for all 𝑡 ∈ 𝑇 and 𝑣 ∈ 𝑉, probability 𝑝(𝑡, 𝑣)

 𝑘, 𝑠 ∈ ℤ>0

Output: 𝑆 ⊆ 𝑉

Constraint: |𝑆| = 𝑠

 𝐿𝑆 ≤ 𝛼 ⋅ 𝐿𝑆′ for all 𝑆′ ⊆ 𝑉 such that |𝑆′| = 𝑠.

Objective Function: None

By the definition of 𝐿𝑆, when 𝑠 = 𝑘 − 1, 𝐿𝑆 = 0 for all non-clique 𝑆. When 𝑆 is a solution of the clique

problem, we have 𝐿𝑆 > 0. By the following program, we will prove that above optimization model,

called as 𝛼-approximation RG-TOSS’’ is NP-hard based on the fact that the clique problem is NP-hard.

Set alpha-approx-RG-TOSS’’(Set V, Set E, int k, int s)

Set clique(Set V, Set E, int s){

 return alpha-approx-RG-TOSS’’(V, E, s-1, s)

}

Suppose that there exists a clique 𝑆′ with |𝑆′| = 𝑠. We know that there is some 𝑆′ such that

|𝑆′| = 𝑠 and 𝐿𝑆′ > 0. Let us assume that the output of alpha-approx-RG-TOSS’’ is 𝑆 . By the

constraint of the 𝛼-approximation RG-TOSS’’, we have 𝐿𝑆 ≥ 𝛼 ⋅ 𝐿𝑆′ . As 𝛼 > 0 and 𝐿𝑆′ > 0, 𝐿𝑆 > 0.

𝑆 is a clique and the function clique runs correctly.

We then know that it is not possible to have any approximation algorithm for the RG-TOSS’’

problem.

Reference

[1] D. P. Williamson and D. Shmoys, “The design of approximation algorithms”, Cambridge University

Press, 2011. Chapter 2.2

[2] C. Y. Shen, H. H. Shuai, K. F. Hsu, and M. S. Chen, “Task-Optimized Group Search for Social

Internet of Things”, Proceedings of the 20th International Conference on Extending Database

Technology (EDBT’17), pages 108-119, 2017.

